Research Challenges in High Performance VLSI Circuits

Professor Eby G. Friedman

URL: http://www.ece.rochester.edu/~friedman

Department of Electrical and Computer Engineering
University of Rochester
Agenda

- Fundamental trends in high speed, high complexity systems
- Current research problems and challenges
- Recent research results
- Conclusions
Agenda

- Fundamental trends in high speed, high complexity systems
 - Current research problems and challenges
 - Recent research results
 - Conclusions
Design Goals of CMOS Integrated Circuits

- **1970's**: Area
- **1980's**: Speed/Area
- **1990's**: Speed/Power
- **2000's**: Speed/Power/Noise

- **Ultra-Low Power**
High Performance Digital IC Design Challenges

• Primary objectives
 - Improve chip functionality
 - Improve circuit density
 - Improve performance

 More transistors Smaller transistors Faster transistors

 Larger ICs On-chip scaling Higher clock speeds

Design complexity Noise sensitivity Power dissipation

Interconnect design Synchronization Low power design
IC Design Gap

- Semiconductor manufacturing capability outpaces design productivity

- Design gap in *growth per year*
 - Density → 58%
 - Utilization → 21%

SRC PDTF Report 1997
Sources of Uncertainty

• Design Uncertainty
 – Lack of design details
 – Changes in specification

• Model Uncertainty
 – Model accuracy
 – Conservative models

• Process Uncertainty
 – Manufacturing imperfections
 – Changes in technology

Importance of Interconnect

- With technology scaling
 - Gate delay decreases
 - Wire length increases
 - Wire cross sectional area decreases
- Wire delay increases polynomially with technology scaling
History of Interconnect Modeling

- Gate delay was dominant
 - Interconnect was modeled as short-circuit

- Interconnect capacitance became comparable to gate capacitance

- Interconnect resistance became comparable to gate resistance
Modeling Interconnect Inductance

- Factors that make inductance effects important
 - Signal transition times are much shorter
 - Comparable to the signal time of flight
 - Faster devices
 - Reduction in interconnect resistance
 - Wide lines at higher metal layers
 - Introduction of low resistance materials for interconnect

\[
\begin{align*}
C_{\text{line}} &= Cl \\
R_{\text{line}} &= Rl \\
L_{\text{line}} &= Ll
\end{align*}
\]
Low Power Design Issues

- Power depends quadratically on V_{DD}
 - V_{DD} scaling degrades speed
- Leakage current has become significant
 - Stand by power dissipation

Microprocessor Power Trend

- Total Power (watts)
- Year: 1998 to 2010
- Power trend shows an increase over time.
System Synchronization Styles

• Synchronization
 – Controls the flow of events within a system
 – All systems are asynchronous in reality
 – Provides an absolute or relative time reference
Agenda

- Fundamental trends in high speed, high complexity systems

Visible Current research problems and challenges
 - Signal Integrity
 - Interconnect design
 - Low power, high speed circuits
 - Global power distribution networks
 - Clock distribution network

- Recent research results

- Conclusions
Noise in Digital Integrated Circuits

- Traditional Definition of Noise
 - Undesired or unwanted energy
 - Degrades signal quality

- Voltage or current variations

- Temporal variations
 - Signal source
 - Clock jitter

- Delay uncertainty
 - Variations in signal delay propagation

\[V_1 \quad \Delta V \quad V_2 \]

\[\Delta t \]

\[\text{Signal Propagation} \quad \Delta t \quad \text{Target Delay} \]
Interconnect Capacitive Coupling

- Fringing capacitance increases with scaling
 - Spacing between lines decreases
 - Capacitive voltage divider creates coupling
 - Produces variation in the signal delay
Capacitive Coupling Noise

• Signal Coupling
 – Crosstalk
 – Aggressor – victim model
 • Aggressor: line generating noise
 • Victim: noise sensitive line

• Variations in signal delay
 – Simultaneous switching noise
 – Variations in effective coupling capacitance

*K. T. Tang and E. G. Friedman.,” Delay and Noise Estimation of CMOS Logic Gates Driving Coupled Resistive-Capacitive Interconnections,” Integration, the VLSI Journal, September 2000
Inductive Coupling

- **On-chip inductance effects**
 - Increasing importance
 - Faster edge rates
 - Longer interconnect lengths on-chip
 - Mutual inductive coupling
 - Strongly depends upon the current return path
 - Return path can vary dynamically
Dependence of Inductance on Frequency

• Skin Effect
 – Low frequency
 • Current flow is uniformly distributed within the wire
 – High frequency
 • Current flow concentrates at the wire surface

• Proximity effect
 – No effect at low frequency
 – High frequency
 • Return current concentrates along the edges
Interconnect Shielding

• Insert power lines among signal lines
 – Isolates an aggressor (noisy) line from sensitive neighboring lines
 – Increases the noise tolerance of a sensitive line

• Reduces capacitive coupling
 – The voltage of the shield lines typically does not switch
 – Reduces variations of the effective line capacitance
 • Reduced delay uncertainty

• Controls mutual inductance effects
 – The current return path is clearly determined
Shielding Efficiency

• Achieves a target reduction in noise
 – Uses minimal metal line resources

• Shielding close to the driver may be redundant
 – When crosstalk occurs farther from the wire driver
 – Peak noise increases

• Shielding line density
 – Tradeoff between
 • Noise reduction
 • Wire routing area

Other Noise Reduction Techniques

• Increasing wire spacing
 – Effective for capacitive coupling
 – Non-efficient use of routing area

• Improving circuit tolerance to noise
 – PseudoCMOS domino
 • CMOS noise margin
 • Domino switching speed
 – Use of keepers

Research Objectives

- Develop accurate models to characterize noise
- Develop efficient shielding methodologies
- Enhance circuit tolerance to noise
- Exploit on-chip inductance for low power
- Improve CAD tools for on-chip inductance extraction
Agenda

• Fundamental trends in high speed, high complexity systems

❖ Current research problems and challenges
 – Signal Integrity
 – Interconnect design
 – Low power, high speed circuits
 – Global power distribution networks
 – Clock distribution network

• Recent research results

• Conclusions
Aluminum vs Copper Characteristics

- **Aluminum lines**
 - Larger coupling capacitance
 - Larger coupling noise

- **Copper lines**
 - Lower resistance
 - Inductance effects are more significant in wider lines

Geometric Wire Characteristics

- **Narrow lines**
 - RC dominant
 - Quadratic delay with line length

- **Wide lines**
 - Less noise at the far end
 - Delay is linearly dependent on line length
 - Inductive behavior

Figures of Merit to Characterize On-Chip Inductance

- Compare a distributed RLC model to a distributed RC model

- RC model is sufficient if:
 - Attenuation is sufficient large to make reflections negligible
 - Waveform transition is slower than twice the time of flight

\[
\frac{RL}{2} \sqrt{\frac{C}{L}} > 1
\]

\[
t_r > 2l\sqrt{LC} = 2T_O
\]

Interconnect Design

- Simultaneous driver and wire sizing
 - Optimize
 - Delay
 - Signal transition time
 - Dynamic and short circuit power

- Repeater insertion
 - Linear delay with wire length
 - Tapering factor - buffers
 - Optimal repeater sizing and spacing

- Active regenerators - boosters
 - Support bi-directional wire behavior
 - No spacing constraints
 - High power dissipation
Research Objectives

• Develop methodologies to characterize interconnect impedances

• Co-design interconnect drivers with wires
 – Optimize
 • Signal delay
 • Signal transition time
 • Reduction in power dissipation
Agenda

• Fundamental trends in high speed, high complexity systems

☞ Current research problems and challenges
 – Signal Integrity
 – Interconnect design
 – Low power, high speed circuits
 – Global power distribution networks
 – Clock distribution network

• Recent research results

• Conclusions
Low Power High Speed CMOS Circuits

- Power depends quadratically on V_{DD}
- Reduction in supply voltage
 - Degrades circuit speed

Microprocessor Power Trend

- Total Power (watts)
- Year
Leakage Current

• Leakage current is the primary source of power consumption in an idle circuit
• Sub-threshold current increases with scaling V_{TH}
• Assuming Moore’s law is obeyed in the future
 – Transistor count and microprocessor frequency doubles every two years
 – Aggressive threshold voltage scaling

• Leakage power is expected to exceed dynamic power in the near future
• Leakage reduction techniques are therefore necessary

Microprocessor power trend

Leakage Current Reduction

• Increase threshold voltage
 – Degrades circuit speed

• Dual V_{TH}
 – Domino Circuits

• High V_{TH} for non-critical circuits
 – Reduced leakage current

• Low V_{TH} for critical circuits
 – Increased speed

• Variable voltage threshold
• Adaptive body biasing
Multiple On-Chip Voltage Supply

• Multiple V_{DD} microprocessors
 – Use low V_{DD} on the critical circuits
 • Satisfy the circuit performance requirements
 – Use high V_{DD} on the non-critical circuits
 • Maintain dynamic switching power within acceptable limits

• Multiple on-chip power supply sources
 – DC-DC voltage conversion circuits
 – Voltage interface circuits
 – Efficiency issues
 • Voltage conversion losses
Low Swing Interconnect

- Interconnect related power
 - 50% to 90% of the total power consumption
 - Lowers the signal voltage swing

- Voltage level converters
 - Driver end
 - Reduce the voltage swing
 - Receiver end
 - Regenerate high voltage level required by the circuit blocks
Research Objectives

• Investigate tradeoffs among
 – Power reduction
 – Cost and complexity increase in the manufacturing process
 – Degradation of signal characteristics
 • Delay
 • Transition time

• Reduce leakage current
Agenda

• Fundamental trends in high speed, high complexity systems

حف Current research problems and challenges
 – Signal Integrity
 – Interconnect design
 – Low power, high speed circuits
 – Global power distribution networks
 – Clock distribution network

• Recent research results

• Conclusions
The Problem of Power Delivery

- **Objective:** Deliver power to the load while maintaining the power supply voltages within target noise margins under specified load demands

\[V = V_{dd} - IR_p - L_p \frac{dI}{dt} \]

- **Obstacles:** Power lines are not ideal and have finite resistance and inductance
 - Resistive noise \(V_R = IR \)
 - Caused by high transient currents drawn by the load
 - Inductive noise \(V_L = L \frac{di}{dt} \)
 - Caused by high current slew rates \(di/dt \) produced by the load
Current Demands of Future Circuits

- Current slew rate demands are rising faster than average current demands
Design Issues in Power Distribution Networks

• Noise - voltage supply fluctuation
 – Resistance of the power supply lines
 • IR drop
 – Inductance effects
 • \(L \cdot \frac{dI}{dt} \) noise
 – Power grid resonance
 • Ringing effects

• Electromigration
 – Increased current density

• Network architecture
 – Resources allocation
 – Metal area optimization

• Heat dissipation
 – Temperature variations produce delay uncertainty
Design of Power Distribution Grids is a Multifaceted Problem

- R, IR, J, L, $Area$, $L \frac{di}{dt}$, grid architectures, decoupling capacitors, electromigration

Inductive Characteristics of Power Distribution Networks

• Affects the integrity of the signals
 – Primary current return path in on-chip single ended signals
 – Return current flows through neighboring signal wires
 • Causes signal-to-signal crosstalk

• Affects the integrity of the power supply
 – Simultaneous switching noise
 – RLC resonances within the power grids
Resource Requirements for On-Chip Power Distribution

- Power distribution networks use an increasingly larger share of on-chip resources to meet increasing demands
 - Share of metal resources increases
 - IBM Power4 CPU: 28% of on-chip metal
 - Hewlett-Packard PA-8500: >35% of on-chip metal

- On-chip decoupling capacitors occupy significant area
 - Typically 5% to 15% of chip area

- Optimizing the on-chip power distribution network can significantly increase the share of metal resources available for signal routing
Research Objectives

- Explore inductive/resistance/area tradeoffs in on-chip power distribution grids
- Minimize resources used by power distribution networks
- Efficiently estimate inductance of the on-chip power grid
- Develop techniques to minimize power grid inductance
Agenda

• Fundamental trends in high speed, high complexity systems

❖ Current research problems and challenges
 – Signal Integrity
 – Interconnect design
 – Low power, high speed circuits
 – Global power distribution networks
 – Clock distribution network

• Recent research results

• Conclusions
Design Issues in High Performance Clock Distribution Networks

• Improve circuit performance
 – Increase clock frequency

• Relax tight timing constraints
 – Control the clock signal delay
 – Prevent variation of the clock signal from the target values
 • Delay uncertainty

• Reduce the power dissipated by the clock distribution network
 – Up to 70% of the total on-chip dynamic power*

Enhancing Circuit Performance

• Non-zero clock skew scheduling
 – Exploit the difference between data path delays
 – Reduce clock period

• Retiming
 – Re-position memory elements (registers) to minimize:
 • Clock period
 • Number of registers

• Wave pipelining
 – Propagate multiple data waves within the same clock period
 – Guarantee no interference among subsequent waves

X. Liu, M. C. Papaefthymiou, and E. G. Friedman “Retiming and Clock Scheduling for Digital Circuit Optimization,” IEEE Tran. on CAD, Feb. 2002
Controlling Clock Signal Variations

• Increasing clock frequencies
 – Tighter timing constraints

• On-chip feature size scaling aggravates delay uncertainty
 – Increased sensitivity to signal delay deviations

• Improve signal integrity
 – Clock buffer insertion
 • Increased power dissipation
 • May increase clock signal delay
 – Shielding of clock lines
 • Routing area limitations
 • Shielding efficiency
Research Objectives

• Control the variations of the clock signal delay
 – Enhance clock signal integrity
 – Satisfy timing constraints
 – Apply design strategies to improve performance
 • Non-zero clock skew
 • Retiming

• Reduce power dissipated by the clock distribution network
 – Develop efficient clock gating strategies
 – Design clock distribution network for minimum power
 • Repeater sizing and insertion
 • Wire sizing
Agenda

• Fundamental trends in high speed - high complexity systems

• Current research problems and challenges

Recent research results
- Design methodologies for on-chip inductive interconnect
- Low power, high speed circuit design techniques
- On-chip DC-to-DC conversion
- Inductive characteristics of power distribution grids
- Reduced delay uncertainty in clock distribution networks
- Substrate coupling in mixed-signal integrated circuits

• Conclusions
Agenda

- Fundamental trends in high speed - high complexity systems

- Current research problems and challenges

Recent research results
 - Design methodologies for on-chip inductive interconnect
 - Optimizing inductive interconnect for low power
 - Repeater insertion in inductive interconnect
 - Wire shaping effects
 - Low power, high speed circuit design techniques
 - On-chip DC-to-DC conversion
 - Inductive characteristics of power distribution grids
 - Reduced delay uncertainty in clock distribution networks
 - Substrate coupling in mixed-signal integrated circuits

- Conclusions
Transient Power Tradeoff in Inductive Interconnect

- **Dynamic power** increases with line width
- **Short-circuit power** may decrease in underdamped highly inductive lines
- An optimum interconnect width exists
 - Minimum **transient power**

Transition Time Characteristics

- The characteristic impedance of the line decreases with increasing width
- Driving condition
 - Resistive
 - Overdriven
 - Matched
 - Underdriven

- Minimum transition time for line matched with the driver

An optimum width for minimum power exists.
Simultaneous Driver and Wire Sizing

• Larger driver reduces the signal transition time
 – Reduce short circuit power

• Analytical solution illustrates the minimum power
 – Specific driver and wire size that minimizes transient power

• Tradeoff between dynamic and short-circuit power in inductive interconnect
Agenda

• Fundamental trends in high speed - high complexity systems

• Current research problems and challenges

Recent research results

– Design methodologies for on-chip inductive interconnect
 • Optimizing inductive interconnect for low power
 • Repeater insertion in inductive interconnect
 • Wire shaping effects
– Low power, high speed circuit design techniques
– On-chip DC-to-DC conversion
– Inductive characteristics of power distribution grids
– Reduced delay uncertainty in clock distribution networks
– Substrate coupling in mixed-signal integrated circuits

• Conclusions
Effects of On-Chip Interconnect Inductance on Circuit Design Methodologies

• Optimum sizing of RLC line with repeaters
A tradeoff exists between
- Minimum signal propagation delay
- The total power dissipation in a repeater system driving an RLC line
Optimization Criteria for Interconnect Width

<table>
<thead>
<tr>
<th>$l = 5 \text{ mm}$</th>
<th>Minimum Power</th>
<th>No Repeaters</th>
<th>Minimum PDP</th>
</tr>
</thead>
<tbody>
<tr>
<td>W_{int} (μm)</td>
<td>0.8</td>
<td>2.1</td>
<td>2.1</td>
</tr>
<tr>
<td>Number of Repeaters</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Repeater Size</td>
<td>43.3</td>
<td>61.2</td>
<td>61.2</td>
</tr>
<tr>
<td>Min. Delay (nsec)</td>
<td>Total</td>
<td>0.157</td>
<td>0.051</td>
</tr>
<tr>
<td>Power (mW)</td>
<td>Total</td>
<td>1.73</td>
<td>1.98</td>
</tr>
<tr>
<td></td>
<td>Increase</td>
<td>208%</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>Increase</td>
<td>0%</td>
<td>14.5%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$l = 15 \text{ mm}$</th>
<th>Minimum Power</th>
<th>No Repeaters</th>
<th>Minimum PDP</th>
</tr>
</thead>
<tbody>
<tr>
<td>W_{int} (μm)</td>
<td>0.8</td>
<td>20</td>
<td>3.9</td>
</tr>
<tr>
<td>Number of Repeaters</td>
<td>5</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Repeater Size</td>
<td>43.2</td>
<td>225</td>
<td>80.7</td>
</tr>
<tr>
<td>Min. Delay (nsec)</td>
<td>Total</td>
<td>3.87</td>
<td>0.19</td>
</tr>
<tr>
<td>Power (mW)</td>
<td>Total</td>
<td>5.2</td>
<td>21.31</td>
</tr>
<tr>
<td></td>
<td>Increase</td>
<td>1936%</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>Increase</td>
<td>0%</td>
<td>310%</td>
</tr>
</tbody>
</table>

- For long lines, PDP is an effective criterion
 - Satisfies both high performance and low power requirements

Agenda

• Fundamental trends in high speed - high complexity systems

• Current research problems and challenges

Recent research results

– Design methodologies for on-chip inductive interconnect
 • Optimizing inductive interconnect for low power
 • Repeater insertion in inductive interconnect
 • Wire shaping effects
– Low power, high speed circuit design techniques
– On-chip DC-to-DC conversion
– Inductive characteristics of power distribution grids
– Reduced delay uncertainty in clock distribution networks
– Substrate coupling in mixed-signal integrated circuits

• Conclusions
Optimum Shaping of a Distributed \textit{RLC} Interconnect

- Line inductance increases the effectiveness of optimum wire shaping
 - Increased circuit speed
 - Reduced power dissipation
Agenda

• Fundamental trends in high speed - high complexity systems

• Current research problems and challenges

 Recent research results
 – Design methodologies for on-chip inductive interconnect
 – Low power, high speed circuit design techniques
 – Low swing interconnect
 – Low leakage domino logic
 – Variable threshold voltage keeper
 – On-chip DC-to-DC conversion
 – Inductive characteristics of power distribution grids
 – Reduced delay uncertainty in clock distribution networks
 – Substrate coupling in mixed-signal integrated circuits

• Conclusions
Low Swing Interconnect

- Low power techniques
 - Reduce the supply voltage → Reduced circuit speed
 - Different blocks operate at different voltage levels
 - For signal transfer, specialized voltage interface circuits are necessary
 - Reduce the signal voltage swing on long interconnects

- Voltage level converters
 - Driver end
 - Reduce the voltage swing
 - Receiver end
 - Regenerate high voltage level required by the circuit blocks
CMOS Voltage Interface Circuit

- Bi-directional full voltage level conversion
 - Driver end
 - High swing to low swing
 - Receiver end
 - Low swing to high swing

- No static DC currents
- High energy efficiency
 - 89% to 99% level conversion efficiency
 - Load range: 1 pF → 15 pF

Results of Circuit Analysis

• Lower power
• Enhanced performance
• Small area as compared to previously published circuits
 – Up to 3.6x delay improvement
 – Up to 198x power reduction

• 0.18 µm CMOS
• $V_{DD1} = 1.8$ volts
• $V_{DD2} = 3.3$ volts

<table>
<thead>
<tr>
<th>Circuit</th>
<th>Area (normalized)</th>
<th>MFSO (MHz)</th>
<th>Power (µW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SF</td>
<td>2.8</td>
<td>240</td>
<td>4.5</td>
</tr>
<tr>
<td>CQ</td>
<td>2.1</td>
<td>200</td>
<td>17.8</td>
</tr>
<tr>
<td>ZGR</td>
<td>1.6</td>
<td>590</td>
<td>257.1</td>
</tr>
<tr>
<td>NIITA</td>
<td>1.0</td>
<td>380</td>
<td>2.9</td>
</tr>
<tr>
<td>KSF</td>
<td>1.3</td>
<td>610</td>
<td>1.3</td>
</tr>
</tbody>
</table>

Agenda

• Fundamental trends in high speed - high complexity systems

• Current research problems and challenges

Recent research results
 – Design methodologies for on-chip inductive interconnect
 – Low power, high speed circuit design techniques
 – Low swing interconnect
 – Low leakage domino logic
 – Variable threshold voltage keeper
 – On-chip DC-to-DC conversion
 – Inductive characteristics of power distribution grids
 – Reduced delay uncertainty in clock distribution networks
 – Substrate coupling in mixed-signal integrated circuits

• Conclusions
Leakage Current Reduction Technique

- A circuit technique* is proposed for reduced standby mode energy dissipation
 - Power, delay, and area efficient as compared to previously proposed schemes

- Proposed dual-V_t domino circuit technique has significantly reduced leakage current as compared to a purely low-V_t implementation
 - High-V_t transistors are strongly cutoff

<table>
<thead>
<tr>
<th>Leakage Power</th>
<th>Standard</th>
<th>LS-Full</th>
<th>LS-Weak</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-V_t</td>
<td>249</td>
<td>238</td>
<td>235</td>
</tr>
<tr>
<td>Dual-V_t</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>High-V_t</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Standard: standard domino logic circuit, LS-Full: low swing domino with a full swing keeper, LS-Weak: low swing domino with a low swing keeper

Domino Logic Characteristics

- **Reduced V_T**
 - Enhanced speed
 - Low supply voltage
 - Low noise immunity

- **Low swing domino logic is proposed**
 - Reduced dynamic power consumption
 - No noise immunity degradation

Simulation Results

- Fully driven keeper circuit
 - Enhanced power
 - Enhanced noise immunity
 - As compared to standard domino

- Weakly driven keeper circuit
 - Reduced contention current
 - Reduced power
 - Enhanced speed
 - As compared to fully driven domino

<table>
<thead>
<tr>
<th></th>
<th>Power</th>
<th>Delay</th>
<th>MTNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard domino</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Fully driven keeper</td>
<td>0.91</td>
<td>1.46</td>
<td>1.03</td>
</tr>
<tr>
<td>Weakly driven keeper</td>
<td>0.88</td>
<td>1.38</td>
<td>0.98</td>
</tr>
</tbody>
</table>

MTNA: Maximum tolerable noise amplitude
Dual V_T Domino Logic

- Enhance the proposed low swing domino circuits
 - Reduced standby leakage current
 - High V_T transistors are strongly cut-off in the standby mode

- Proposed dual-V_T circuit technique reduces
 - Standby mode leakage (~235 times)
 - Active mode total power
 - Evaluation delay
 - As compared to low-V_T circuit

Agenda

• Fundamental trends in high speed - high complexity systems

• Current research problems and challenges

Recent research results

– Design methodologies for on-chip inductive interconnect
– Low power, high speed circuit design techniques
 – Low swing interconnect
 – Low leakage domino logic
 – Variable threshold voltage keeper
– On-chip DC-to-DC conversion
– Inductive characteristics of power distribution grids
– Reduced delay uncertainty in clock distribution networks
– Substrate coupling in mixed-signal integrated circuits

• Conclusions
Variable Threshold Voltage Keeper

- Precharge phase
 - Keeper is reverse body biased

Variable Threshold Voltage Keeper

- **Precharge phase**
 - Keeper is reverse body biased
- **Evaluation phase**
 - Keeper has a high-V_t
 - Reduced contention current
 - Enhanced speed and power characteristics

Variable Threshold Voltage Keeper

- **Precharge phase**
 - Keeper is reverse body biased

- **Evaluation phase**
 - Keeper has a high-V_t
 - Reduced contention current
 - Enhanced speed and power characteristics
 - Keeper is zero body biased after a delay t_D
 - Enhanced noise immunity

Delay, Power, and NML Characteristics

- Domino logic with variable threshold voltage keeper
 - Up to 60% improved delay
 - 37% reduced power dissipation
 - 75% lower power delay product (PDP)
 - Temporary degradation of noise margin by 15%
 - Only at the beginning of the evaluation phase
- Effectiveness of the technique is enhanced with increased keeper width

SD: standard domino
DVTVK: domino logic with a variable threshold voltage keeper
Agenda

• Fundamental trends in high speed - high complexity systems

• Current research problems and challenges

Recent research results
 – Design methodologies for on-chip inductive interconnect
 – Low power, high speed circuit design techniques
 – On-chip DC-to-DC conversion
 – Inductive characteristics of power distribution grids
 – Reduced delay uncertainty in clock distribution networks
 – Substrate coupling in mixed-signal integrated circuits

• Conclusions
High-Efficiency Monolithic DC-DC Converters for Dual-V_{DD} Microprocessors

- Advantages of integrating the DC-DC converter with the microprocessor
 - Reduced parasitic losses higher efficiency
 - Lower fabrication cost
- High switching frequency reduces the size of the passive devices
- A monolithic high-efficiency DC-DC converter can be realized utilizing a high switching frequency in the GHz range
- Efficiency characteristics of a buck converter change dramatically with increased switching frequency
 - Reduced inductance and capacitance has lowered parasitic losses
 - Complicated tradeoffs exist among inductor and MOSFET-related switching and conduction losses
Switching DC-DC Converters

- Switching DC-DC converters have high efficiency characteristics
- Sources of energy loss
 - Wiring between the passive and active devices inside the converter
 - Wiring from the DC-DC converter output to the microprocessor input pads
Model of a Monolithic Buck Converter

• A parasitic model of a buck converter has been developed
• A closed form expression that characterizes the power dissipation of a buck converter is proposed

• An optimum switching frequency and inductor current ripple pair exists that maximizes efficiency
 – 92% maximum efficiency
 – \(f_s = 114 \text{ MHz}, \Delta i = 9.5 \text{ A} \)
 – \(L = 104\text{pH}, C = 2.1 \mu\text{F} \)

• A design space that permits full integration of an on-chip DC-DC converter has been determined

Analysis with Limited Filter Capacitance

- Area overhead of an integrated filter capacitor
- Maximum achievable efficiency is reduced with decreased filter capacitance
 - L and f_s both increase
 - Increased energy dissipation

<table>
<thead>
<tr>
<th>C (nF)</th>
<th>η (%)</th>
<th>f_s (MHz)</th>
<th>L (pH)</th>
<th>W_{P1} (mm)</th>
<th>W_{N1} (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>74.7</td>
<td>3174</td>
<td>279</td>
<td>51</td>
<td>20</td>
</tr>
<tr>
<td>10</td>
<td>82.8</td>
<td>1227</td>
<td>187</td>
<td>82</td>
<td>33</td>
</tr>
<tr>
<td>100</td>
<td>88.4</td>
<td>477</td>
<td>124</td>
<td>132</td>
<td>53</td>
</tr>
</tbody>
</table>

80 nm CMOS technology, $V_{DD1} = 1.2$ volts, $V_{DD2} = 0.9$ volts, η: efficiency, f_s: switching frequency, C: filter capacitance, L: filter inductance, W_{P1}: width of the power PMOS $P1$, W_{N1}: width of the power NMOS $N1$

- 86% efficiency determined by simulation
 - Within 2.4% of our model

Agenda

• Fundamental trends in high speed - high complexity systems

• Current research problems and challenges

☞ Recent research results
 – Design methodologies for on-chip inductive interconnect
 – Low power, high speed circuit design techniques
 – On-chip DC-to-DC conversion
 – Inductive characteristics of power distribution grids
 – Reduced delay uncertainty in clock distribution networks
 – Substrate coupling in mixed-signal integrated circuits

• Conclusions
Impedance Characteristics of Multi-Layer Power Distribution Grids

- Complex structures containing multiple conductors with different electrical characteristics
 - Grid resistance and inductance vary with frequency
• Global power distribution networks are conservatively designed to meet worst case requirements
Dependence of Inductance on Frequency: Skin and Proximity Effects

• Inductance of a conductor decreases with frequency due to several effects
 – Although inductive impedance $j\omega L$ increases with frequency f

• Skin effect
 – Current concentrates at the surface of a conductor
 – Internal inductance of the conductor decreases
 • Current and magnetic field at the core of the conductor decrease
 – Negligible effect on inductance in integrated circuits
 • The drop in the internal inductance is negligibly small
 – A fraction of the low frequency internal inductance, 0.05 nH/mm

• Proximity effect
 – Current concentrates on the conductor side closest to the current return path
 – Significant only in adjacent wide wires carrying very high frequency signals
Dependence of Inductance on Frequency: Multi-path Current Redistribution

- In a circuit with multiple current paths the distribution of the current flow is frequency dependent
 - Low frequency — determined by the resistance of the paths
 - High frequency — determined by the inductance of the paths

\[I_1 \approx I_0 \frac{R_2}{R_1 + R_2} \quad I_2 \approx I_0 \frac{R_1}{R_1 + R_2} \]

- This effect is the primary source of inductance variation with frequency in integrated circuits
Grid Layers Typically Have Disparate Electrical Characteristics

- Grid layers have different resistive and inductive characteristics
 - Layers with smaller net cross-sectional area have higher resistance
 - Layers with smaller line pitch have lower inductance
 - Lower grid layers have smaller line width, height, and pitch
 - Lower inductance and higher resistance
- Each layer can be modeled as a separate RL branch
Impedance Characteristics of Individual Grid Layers

- Each layer serves as the lowest impedance path within a certain frequency range
 - Carries the largest share of current
 - Has the greatest impact on the overall impedance

\[R_1 < R_2 < \cdots < R_N \]
\[L_1 > L_2 > \cdots > L_N \]
Frequency Variation of Inductance and Resistance in Multi-Layer Grids

- Significant multi-path current redistribution
 - Low frequency inductance is determined by the upper layer
 \[L = L_1 \left(\frac{R_2}{R_1 + R_2} \right)^2 + L_2 \left(\frac{R_1}{R_1 + R_2} \right)^2 \quad L_1 \gg L_2 \quad R_2 \gg R_1 \]
 - High frequency inductance is determined by the lower layer
 \[L = \frac{L_1 L_2}{L_1 + L_2} \]
Conclusions

• Inductance and resistance of multi-layer grids vary significantly with frequency
 – Unlike the inductance and resistance of an individual grid layer
 – Due to disparate electrical properties of comprising grid layers
 • Significant current redistribution with frequency among grid layers
 • Grid inductance interacts with grid resistance
• An analytical model has been developed to determine the inductive and resistive characteristics of a multi-layer grid
 – Supports the efficient design of power distribution grids
 • Efficient design space exploration early in the design cycle
 • Efficient allocation of decoupling capacitance
Agenda

• Fundamental trends in high speed - high complexity systems

• Current research problems and challenges

❖ Recent research results
 – Design methodologies for on-chip inductive interconnect
 – Low power, high speed circuit design techniques
 – On-chip DC-to-DC conversion
 – Inductive characteristics of power distribution grids
 – Reduced delay uncertainty in clock distribution networks
 – Substrate coupling in mixed-signal integrated circuits

• Conclusions
Enhancing Clock Tree Topology

- Key Concept:
 - The larger the common part of the clock tree shared by the two signals that drive the sequential-adjacent registers
 - The smaller the delay uncertainty for the data path between these registers

- Approach:
 - Change the hierarchy of the branch nodes within the clock tree
 - Increase the common part of the clock paths driving the critical data paths
 - The delay uncertainty is shifted to less sensitive data paths

Data Path Tolerance to Delay Uncertainty

- Uncertainty graph
 - Describes the tolerance of the data paths to clock signal delay uncertainty

- Tolerance of a data path to delay uncertainty determines
 - Maximum number of non-common branch nodes between the clock paths that drive this path
• Delay uncertainty of the critical paths is either reduced or unchanged

• The delay uncertainty is increased in one non-critical path only
The reduction in delay uncertainty is determined for four different branching factors (BF)

- The smaller the branching factor
 - The deeper the clock tree
 - The greater the reduction in delay uncertainty
Demonstration of Layout Improvements

- Increase in total wire length in RDU: 4.5%

<table>
<thead>
<tr>
<th>Data Paths</th>
<th>Wire length of the non-common part of the clock tree</th>
<th>Delay Uncertainty between clock signal paths</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MWL tree</td>
<td>RDU tree</td>
</tr>
<tr>
<td>2 → 3</td>
<td>13.5</td>
<td>11.1</td>
</tr>
<tr>
<td>1 → 3</td>
<td>12.6</td>
<td>10.2</td>
</tr>
<tr>
<td>6 → 4</td>
<td>12.4</td>
<td>12.6</td>
</tr>
<tr>
<td>11 → 4</td>
<td>7.9</td>
<td>5.5</td>
</tr>
<tr>
<td>3 → 4</td>
<td>7.3</td>
<td>4.9</td>
</tr>
<tr>
<td>10 → 3</td>
<td>7.4</td>
<td>5.7</td>
</tr>
<tr>
<td>8 → 3</td>
<td>1.9</td>
<td>1.9</td>
</tr>
<tr>
<td>11 → 3</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Average</td>
<td>7.9</td>
<td>6.5</td>
</tr>
</tbody>
</table>
Agenda

• Fundamental trends in high speed - high complexity systems

• Current research problems and challenges

凓 Recent research results
 – Design methodologies for on-chip inductive interconnect
 – Low power, high speed circuit design techniques
 – On-chip DC-to-DC conversion
 – Inductive characteristics of power distribution grids
 – Reduced delay uncertainty in clock distribution networks
 – Substrate coupling in mixed-signal integrated circuits

• Conclusions
Substrate Coupling in Mixed-Signal Integrated Circuits

- Sources of coupling noise
- Digital switching noise can affect sensitive analog circuits
- High power analog circuits can affect digital circuits
- Store incorrect state in bistable register
Project Goals

• Enhance quality and decrease cost of ink jet printers

• Evaluate analog-to-digital substrate coupling
 – High current, high power analog devices can cause incorrect data to be latched into a bistable register

• Develop design techniques to mitigate substrate coupling effects
 – Ground line isolation
 – Substrate contact placement
 – Power driver circuit characteristics
 • Physical transistor size and drift region
 – Influence of circuit placement on noise
 • Directional effects
 – Quantitative estimation of noise
 – Parameter extraction for model development
Experimental Analysis and Evaluation

- Test circuits have been designed and fabricated
- Various parameters effecting coupling noise have been evaluated on experimental circuit tests

Feedback Behavior of Substrate Coupling

- Noise waveforms generated within the substrate by power drivers have been individually monitored.
- Power transistors are observed to generate noise during both switching and normal operation.

Experimental Analysis of Test Circuits

- Factors effecting the noise tolerance of static and dynamic registers have been evaluated
 - Clocking regime
 - Physical separation
 - Driver power supply voltage
 - Number of active drivers
 - On-chip location

![Graph showing noise level vs. active drivers (3-7)](image)

![Graph showing noise level vs. clocking regime (1-4)](image)

![Graph showing noise received vs. physical separation (350 µm - 500 µm)](image)

![Graph showing noise tolerance vs. clocking regime (1-4)](image)
Substrate Contact Placement

- Careful substrate contact placement can
 - Minimize the amplitude of the substrate noise
 - Reduce the noise nonuniformity
- A methodology has been developed for placing substrate contacts to reduce noise

Epi technology

Non-epi technology

Substrate noise distribution

Agenda

• Fundamental trends in high speed, high complexity systems

• Current research problems and challenges

• Recent research results

❖ Conclusions
Conclusions

• Fundamental design issues and trends
 – Specific to high performance, high complexity VLSI based digital circuits

• Reviewed primary design bottlenecks in high performance CMOS circuits

• Discussed recent research results

• The quest never ends!
 – There are all kinds of exciting problems to work on as we move into the world of CMOS nanometer design